Coniferous forests contribute to the European economy; however, they have experienced a decline since the late 1990s due to an invasive pest known as the pine processionary moth, Thaumetopoea pityocampa. The impacts of this pest are increasingly exacerbated by climate change. Traditional control strategies involving pesticides have had negative effects on public health and the environment. Instead, forest managers seek a more ecological and sustainable approach to management that promotes the natural actions of pest control agents. This study aims to evaluate the role of bats in suppressing pine processionary moths in pine forests and examine how the bat community composition and abundance influence pest consumption. Bats were sampled in the mountainous environment of the Serra da Estrela in central Portugal to collect faecal samples for DNA meta-barcoding analysis. We assessed the relationship between a) bat richness, b) bat relative abundance, c) bat diet richness, and the frequency of pine processionary moth consumption. Our findings indicate that sites with the highest bat species richness and abundance exhibit the highest levels of pine processionary moth consumption. The intensity of pine processionary moth consumption is independent of insect diversity within the site. The highest occurrence of pine processionary moth presence in bat diets is primarily observed in species that forage in cluttered habitats. A typical predator of pine processionary moths among bats is likely to be a forest-dwelling species that specialises in consuming Lepidoptera. These species primarily use short-range echolocation calls, which are relatively inaudible to tympanate moths, suitable for locating prey in cluttered environments, employing a gleaning hunting strategy. Examples include species from the genera Plecotus, Myotis, and Rhinolophus. This study enhances our understanding of the potential pest consumption services provided by bats in pine forests. The insights gained from this research can inform integrated pest management practices in forestry. [Abstract]
Original study:
Augusto, A. M., Raposeira, H., Horta, P., Mata, V. A., Aizpurua, O., Alberdi, A., … & Rebelo, H. (2023). Bat diversity boosts ecosystem services: Evidence from pine processionary moth predation. Science of The Total Environment, 169387. https://doi.org/10.1016/j.scitotenv.2023.169387